# Meltwater feedbacks and acceleration of sea-level rise: likely in Greenland, possible in WAIS?

Byron R. Parizek and Richard B. Alley

Department of Geosciences & the EMS Environment Institute

The Pennsylvania State University

September 2003

Funded by:

NASA/GSFC GSRP

NSF Grant Nos. 0126187 & 9814774

Special thanks to:

S. Anandakrishnan, R.A. Bindschadler,

H. Conway, C.L. Hulbe, J. Li,

D.R. MacAyeal, J. Saba, and H.J. Zwally



#### **Background**

- Classic story of Greenland Ice Sheet (GIS):
  - \* Little or no sliding
  - Slow melt if too-much warming
  - \* Inherent stability wrt "rapid" climate fluctuations offered by long glaciological timescales in GIS setting



#### **Background cont'd**

- But, new Swiss-Camp study... (Zwally et al., 2002):
  - ★ Surface melt in summer → faster flow
  - ★ More melt → even faster flow
  - \* Sliding matters



# **Hypothesis**

Future warming →
more surface melt →
faster flow →
more sea-level rise



# **New sliding law**

- Fit Zwally et al.'s data
- Annually averaged
- Linear in stress

$$u|_{z=b} = C(1 + \bar{\mathcal{Z}}\mathcal{Q})\tau_b$$

no surface melt, some sliding if bed is thawed more surface melting, more sliding





#### The PSU/UofC Flowline Model

- Fast
- Thermomechanical
- Well-characterized FEM techniques (MacAyeal)
- Good isostasy (ELRA; Le Meur and Huybrechts, 1996)
- Good firn and superimposed ice
- Degree-day surface melt (Braithwaite and Thomsen, 1984)
- Benchmarked vs EISMINT, compares well



#### **Experiments**







- Calculate steady Greenland cross-section
- Force with 250 ka of  $\Delta$ climate and  $\Delta$ sea level
- Last 15ka, try many variants of Zwally sliding



# Variants on Zwally sliding

- If melting moves inland with warming
  - –does all the extra water reach bed?
  - \*\*does the point where it reaches bed move inland?
- How warm? 2XCO<sub>2</sub>, 4XCO<sub>2</sub>, 8XCO<sub>2</sub>?
- Slipper Zwally, average Zwally, sticky Zwally fits to data

Total of 84 tests!



#### What do we find?

#### In 2500 AD:

|    | Huybrechts and de Wolde (1999) | How much more sea-level rise     |           |
|----|--------------------------------|----------------------------------|-----------|
|    |                                | we get with Zwally than without* |           |
|    | approx.                        | our favorite                     | our range |
|    | (cm)                           | (cm)                             | (cm)      |
| 2X | 40                             | 15                               | 15–108    |
| 4X | 150                            | 22                               | 15–154    |
| 8X | 320                            | 40                               | 31–262    |

\*using shape factor



# **Pretty pictures**





# So why am I at WAIS?

- WAIS isn't that far from summer melt
- Melt gets through >1220 m of Greenland ice
- Zwallyization of WAIS may not be as far away as we would like
- Looking at WAIS future melt may be wise



#### **Conclusions**

- Rising surface temperatures will lead to increased surface melt in the ablation zone.
- Increased sfc. melt → increased ice velocities in the ablation zone
   → increased ice flux from the accumulation zone into the ablation zone
- Rising surface temperatures and a falling ice surface → inland migration of dry-snow line → progressively involvement of a greater percentage of the ice sheet in this rapid response mode of ice dynamics
- Zwally-based meltwater-enhanced sliding increases modeled GIS sensitivity to warming



#### Conclusions cont'd

- Important to understand water access to bed & how might change in future
- IPCC sea-level rise estimates may be low (an additional ~15-40 cm by 2500 AD is conservative)
- If WAIS warming large, this effect may move South...

